STABILIZED SPINEL AND POLYANION CATHODES

ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory (ECEL) Materials Science and Engineering Program The University of Texas at Austin

May 10, 2011

Project ID #: ES051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: June 2010
- Project end date: May 2012
- 75 % complete

Budget

- Total project funding
 - DOE: \$520K
- Funding for FY10
 - \$260K
- Funding for FY11
 - \$260K

Barriers

- Barriers
 - Cost
 - Cycle life
 - Energy and power densities
- Targets
 - Long cycle life for 4 V and 5 V spinel cathodes
 - Low manufacturing cost for polyanion cathodes
 - Increased energy and power with spinel and polyanion cathodes

RELEVANCE

- To develop high-performance spinel and polyanion cathodes for lithium-ion batteries and a fundamental understanding of their structure-composition-performance relationships
 - To develop 5 V spinel oxide compositions with controlled morphology and optimum cationic substitutions that can maximize the tap density and electrochemical performance
 - To develop a fundamental understanding of the factors that control the electrochemical performance and safety of cation- and anion-substituted stabilized 4 V spinel manganese oxide compositions
 - To develop novel low-cost synthesis processes for phosphate and silicate cathodes

MILESTONES

Month/Year	Milestone			
September 2010	Polyanion-containing cathodes with controlled nanomorphologies			
March 2011	Understanding the self-surface segregation of cations in high-voltage spinel cathodes			
September 2011	Development of novel synthesis approaches for high-capacity nanostructured silicate and phosphate cathodes			

APPROACH / STRATEGY

- Develop a firm understanding of the factors controlling the electrochemical performances of cathode materials and utilize the understanding to develop high-performance cathodes for vehicle batteries
- Cationic and anionic substitutions to obtain stabilized 4 V spinel cathodes
- Effect of cationic and anionic substitution on thermal stability of 4 V spinel cathodes
- Cationic substitutions in 5 V spinels to stabilize the disordered spinel structure
- Novel synthesis approaches for polyanion-containing cathodes including nanoolivines that can lower manufacturing cost with improved performance
- Solid-state, high-energy ball milling, and solution-based synthesis approaches
- Advanced chemical and structural characterizations
- In-depth electrochemical evaluation including impedance analysis
- Understanding of the structure-property-performance relationships

TECHNICAL ACCOMPLISHMENTS AND PROGRESS

- The influence of cationic substitutions on the bulk and surface structures and electrochemical performances of 5 V spinel cathodes has been identified
 - cationic substitutions stabilize the disordered spinel structure, facilitate segregation of certain cations to the surface, and thereby improve significantly the electrochemical performances (cycle life and rate capability)
- Precursors with unique morphologies have been synthesized by novel synthesis approaches to maximize the tap density and performance of 5 V spinels
- The factors that influence the cycle life and safety of 4 V spinels have been identified; oxyfluorides offer better safety than the oxide counterparts
- Substitution of small amounts of Fe significantly improves the electrochemical performances of both LiMnPO₄ and LiCoPO₄ due to surface segregation
- The substitution of VO for Fe in LiFe_{1-x}(VO)_xPO₄ has been found to create vacancies in the Fe sites; the LiFe_{1-x}(VO)_xPO₄ phases formed by the microwave-assisted process are metastable and disproportionate at high temperatures

INFLUENCE OF CATIONIC SUBSTITUTIONS IN 5 V SPINEL

 $-\Delta$ — LiMn_{1.5}Ni_{0.42}Fe_{0.08}O₄

---- LiMn_{1.5}Ni_{0.42}Ga_{0.08}O₄

C rate

8

SELF-SURFACE SEGREGATION IN 5 V SPINELS

Time-of-flight – secondary ion mass spectroscopy (TOF-SIMS)

- Fe segregates to the surface during the synthesis and cooling process, which is consistent with our earlier XPS data
- Self-surface segregation is an attractive strategy to develop a robust electrodeelectrolyte interface with the high-voltage cathodes

MORPHOLOGY CONTROL OF 5 V SPINEL CATHODES

oxalate, AOT, polyhedral

carbonate, CTAB cubic

carbonate, $(NH_4)_2SO_4$ spherical

• Morphology could be controlled with different precipitating agents and additives such as AOT, CTAB, or (NH₄)₂SO₄

- Microcubic precursor is preheated at 450 °C, followed by mixing with LiOH and firing at 900 °C for 12 h
- Precursor morphology is retained in the final spinel sample
- High tap density: 2.0 g/cm³

LiMn_{1.5}Ni_{0.5}O₄ spinel

5 V SPINEL WITH MICRO-CUBIC MORPHOLOGY

- The 5 V spinel was obtained from the single-phase micro-cubic carbonate precursor
- The 5 V spinel exhibits excellent cyclability without any capacity fade compared to a commercial 5 V spinel sample

EFFECTS OF REACTION TIME AND CATIONIC SUBSTITUTIONS

 $Mn_{0.75}Ni_{0.25}CO_3$ Li $Mn_{1.5}Ni_{0.5}O_4$

Mn_{0.75}Ni_{0.25-z}Fe_zCO₃ 12 hours, pH 7.9 +/- 0.05

 $Mn_{0.75}Ni_{0.25}CO_3$

Intensity (arbitrary unit) $Mn_{0.75}Ni_{0.2}Fe_{0.05}CO_{3}$ FeO(OH) 20 30 40 50 Cu K α 2 θ (degree)

LiMn₁₅Ni₀₅O₄

6 hour reaction time

 $Mn_{0.75}Ni_{0.225}Fe_{0.025}CO_3$

 $Mn_{0.75}Ni_{0.2}Fe_{0.05}CO_3$

- Morphology changes with reaction time; 12 h gives spherical morphology
- Fe(OH)₂ formed due to hydrolysis with Fe substitution, which becomes FeOOH at 120 °C

▼ Li_xNi_{1-x}O

CYCLABILITY OF CATION-SUBSTITUTED 4 V OXYFLUORIDE SPINELS

- Capacity fade increases drastically above a fluorine content of 0.2 or below a Mn valence of ~ 3.55+
- This is due to an increasing amount of Mn³⁺ and the consequent Mn dissolution and dynamic Jahn-Teller distortion
- The initial Mn valence should be maintained above ~ 3.6+ to realize acceptable performance

UNDERSTANDING THE CAPACITY FADE IN 4 V OXYFLUORIDE SPINELS

- The capacity fade in 4 V oxyfluoride spinels
 - increases with decreasing Mn valence below ~ 3.6+
 - decreases with increasing electronegativity of the substituted cations M from Ti to Ni
 - decreases with decreasing M-O bond dissociation energy

THERMAL STABILITY OF 4 V SPINEL CATHODES

DSC Plots of Ni-substituted cathodes in the charged state, wetted with electrolyte

- Samples with lower lithium content in the charged state show better thermal stability
- Metal-oxygen bond strength affects the thermal stability significantly
- Similar results were obtained for Al- and Lidoped samples

OLIVINE SOLID SOLUTIONS

MICROWAVE-SOLVOTHERMAL (MW-ST) SYNTHESIS OF LiFe_{1-x}(VO)_xPO₄

Compound	V (ų)	Li/P	V/P	Fe/P
LiFePO ₄	289.85	1.00		0.99
LiFe _{0.95} (VO) _{0.05} PO ₄	287.82	0.99	0.05	0.96
LiFe _{0.90} (VO) _{0.10} PO ₄	287.29	0.97	0.10	0.86
LiFe _{0.85} (VO) _{0.15} PO ₄	286.40	1.02	0.16	0.77
LiFe _{0.75} (VO) _{0.25} PO ₄	285.21	0.99	0.24	0.70

- Substitution of a larger (VO)²⁺ for a smaller Fe²⁺ should increase the unit cell volume, but exactly the opposite is found due to the formation of Fe vacancies as indicated by a lower Fe/P ratio in the sample in the ICP analysis and Fe₃O₄ impurity that could be removed with a magnetic bar
- Fe vacancies are formed to accommodate the larger (VO)²⁺ ions
- Formation of Fe vacancies and the corresponding oxidation of Fe²⁺ to Fe³⁺ decrease the unit cell volume

THERMAL STABILITY OF LiFe_{1-x}(VO)_xPO₄

- The MW-ST LiFe_{1-x}(VO)_xPO₄ samples are metastable and cannot not be made by conventional high-temperature methods
 - With increasing heating temperature in 5 % $H_2 95$ % Ar, the vanadium activity changes from that of $(VO)^{2+/3+}$ in LiVOPO₄ to that of $V^{3+/4+/5+}$ in Li₃V₂(PO₄)₃
 - LiFe_{0.85}(VO)_{0.15}PO₄ synthesized by conventional heating shows only V^{3+/4+/5+} activity without any (VO)^{2+/3+} activity, indicating the instability of LiFe_{0.85}(VO)_{0.15}PO₄

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

- National Renewable Energy Laboratory Dr. Anne Dillon
 - ALD coating of Al₂O₃ on 5 V spinel cathodes
- University of Rhode Island Professor Brett Lucht
 - Investigation of SEI layer formation with stabilized 5 V spinel cathodes
- Pacific Northwest National Laboratory Dr. Jiguang (Jason) Zhang
 - Discussion and coordination of results on 5 V spinel cathodes
- Lawrence Berkeley National Laboratory Dr. Jordi Cabana Jiménez
 - Discussion and coordination of results on 5 V spinel cathodes

PROPOSED FUTURE WORK

- Continue to identify the factors that influence the electrochemical performances of the 5 V spinel cathodes, e.g., role of ordered vs. disordered spinel structure, segregation of cations to the surface, synthesis temperature, and morphology
- Extend the morphological-control synthesis approach pursued for LiMn_{1.5}Ni_{0.5}O₄ spinel to other cation-substituted $LiMn_{1.5}Ni_{0.5-v}M_vO_4$ (M = Cr, Fe, and Ga)
- Recognizing that the substitution of a small amount of Fe improves the performances of LiMnPO₄ and LiCoPO₄, explore whether surface segregation of Fe plays a role in improving the performance of $LiM_{1-x}Fe_xPO_4$ (M = Mn and Co)
- Following our earlier work, explore the microwave-assisted solvothermal synthesis approaches to obtain $Li_2Fe_{1-x}M_xSiO_4$ (M = Mn, Co, and Ni) silicate that have the potential to reversibly insert/extract two lithium per transition metal ion
- Explore the microwave-assisted solvothermal synthesis approach to obtain nanostructured NASICON-related $Li_3V_2(PO_4)_3$ and $Li_9V_3(P_2O_7)_3(PO_4)_2$ cathodes that has the potential to extract more than one lithium per transition metal ion

SUMMARY

5 V Spinel LiMn_{1.5}Ni_{0.5}O₄

- Cationic substitutions stabilize the disordered spinel structure, eliminate the Ni_{1-x}Li_xO impurity, and improve significantly the electrochemical performance
- Certain cations like Fe³⁺ segregate to the surface during the synthesis process of LiMn_{1.5}Ni_{0.5-x}Fe_xO₄ and provide a robust interface with the electrolyte
- Controlled synthesis with unique morphologies offer high tap density

4 V Spinel LiMn_{2-y}M_yO_{4-z}F_z

- The Mn valence has to be above ~ 3.6 + to offer acceptable cycle life
- Electronegativity of M and M-O bond energies play a role in the capacity fade
- The oxyfluoride spinels offer better safety than the oxide counterparts

Polyanion cathodes

- Substitution of Fe improves the performances of LiMnPO₄ and LiCoPO₄
- The substitution of VO for Fe in LiFe_{1-x}(VO)_xPO₄ is accompanied by the formation Fe vacancies and oxidation of Fe²⁺ to Fe³⁺
- The LiFe_{1-x}(VO)_xPO₄ phases are metastable and decompose at high temps.

